Excitation energies from time-dependent density-functional theory.

نویسندگان

  • Petersilka
  • Gossmann
  • Gross
چکیده

A new density-functional approach to calculate the excitation spectrum of many-electron systems is proposed. It is shown that the full linear density response of the interacting system, which has poles at the exact excitation energies, can rigorously be expressed in terms of the response function of the noninteracting (Kohn-Sham) system and a frequency-dependent exchange-correlation kernel. Using this expression, the poles of the full response function are obtained by systematic improvement upon the poles of the Kohn-Sham response function. Numerical results are presented for atoms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Characteristics and Reactivity Relationship of some Thiophene Derivatives

ABSTRACT The application of many hetero-aromatic compounds in pharmaceutical and dye industries make the theoretical study of their dipole moment (µ) oscillator strength (f) and other photo-physical properties worthwhile. These properties determine the solubility of many compounds; predict the relationship between their structures, properties and performance. The f, µ, α, transition dipole mome...

متن کامل

Absorption Spectra and Electron Injection Study of the Donor Bridge Acceptor Sensitizers by Long Range Corrected Functional

Ground state geometries have been computed using Density Functional Theory (DFT) at B3LYP/6-31G(d,p) level of theory. The excitation energies and spectroscopic parameters have been computed using Long range Corrected (LC) hybrid functional by Time Dependent Density Functional Theory (TDDFT) with LC-BLYP level of theory. The Polarizable Continuum Model (PC...

متن کامل

Absorption of DCM Dye in Ethanol: Experimental and Time Dependent Density Functional Study

Experimental and theoretical absorption spectra of [2-[2-[4-(dimethylamino) phenyl]ethenyl]-6-methyl-4H- pyran-4-ylidene]-propanedinitrile (DCM) have been studied. UV-Visible (UV-Vis.) absorption spectrum of DCM has been reported after its synthesis. Two relatively intense peaks appeared at 473 and 362 nm respectively. A theoretical investigation on the electronic structure of DCM is presented ...

متن کامل

Excitation Energies from Time-Dependent Density Functional Theory Using Exact and Approximate Potentials

The role of the exchange-correlation potential and the exchange-correlation kernel in the calculation of excitation energies from time-dependent density functional theory is studied. Excitation energies of the helium and beryllium atoms are calculated, both from the exact Kohn-Sham ground-state potential, and from two orbital-dependent approximations. These are exact exchange and self-interacti...

متن کامل

Prediction of Excitation Energies for Conjugated Oligomers and Polymers from Time-Dependent Density Functional Theory

With technological advances, light-emitting conjugated oligomers and polymers have become competitive candidates in the commercial market of light-emitting diodes for display and other technologies, due to the ultralow cost, light weight, and flexibility. Prediction of excitation energies of these systems plays a crucial role in the understanding of their optical properties and device design. I...

متن کامل

Excitation energies from density functional perturbation theory

We consider two perturbative schemes to calculate excitation energies, each employing the Kohn– Sham Hamiltonian as the unperturbed system. Using accurate exchange-correlation potentials generated from essentially exact densities and their exchange components determined by a recently proposed method, we evaluate energy differences between the ground state and excited states in first-order pertu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 76 8  شماره 

صفحات  -

تاریخ انتشار 1996